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Mortality patterns and trajectories in closely related populations are likely to be 

similar in some respects, and differences are unlikely to increase in the long run. It 

should therefore be possible to improve the mortality forecasts for individual 

countries by taking into account the patterns in a larger group. Using the Human 

Mortality Database, we apply the Lee-Carter model to a group of populations, 

allowing each its own age pattern and level of mortality, but imposing shared rates of 

change by age. Our forecasts further allow divergent patterns to continue for a while 

before tapering off. We forecast greater longevity gains for the US, and lesser for 

Japan, relative to separate forecasts. 

 

 

Background 

 

The populations of the world are becoming more closely linked by 

communication, transportation, trade, technology, and disease. Wilson (2001) has 

documented global convergence in mortality levels. Increasingly it seems improper to 

prepare mortality forecasts for individual national populations in isolation from one 

another, and still more so for the regions within a country. Individual forecasts, even 

when based on similar extrapolative procedures, are likely to imply increasing 

divergence in life expectancy in the long run, counter to this expected and observed 

trend toward convergence. In this paper we consider how a particular extrapolative 

method, originally developed by Lee and Carter (1992), can be modified to forecast 
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mortality for countries taking into account their membership in a group rather than 

individually. We approach the problem in two steps: first, we identify the central 

tendencies within the group, using what we call a common factor approach; and 

second, we give the historical particularities of each country their due weight in 

projecting individual country trends in the short or medium term, while letting them 

taper off in the long term over which divergence no longer occurs. Thus, in the short 

term, inter-country mortality differences in trends may be preserved, but ultimately 

age-specific death rates within the group of countries are constrained to maintain a 

constant ratio to one another. 

 

In 1992, Lee and Carter developed a method (henceforth the LC method) to 

forecast mortality. The LC method reduces the role of subjective judgment by 

extrapolating historical trends, and it forecasts probability distributions of age-specific 

death rates (ASDR) using standard time-series procedures, in the way we briefly 

indicate below.  

 

Let the death rate of age x at time t be m(x,t), for t =0, 1, 2, …, T and x=0, 1, 

…, w; and let the average over time of log(m(x,t)) be a(x). The LC method first 

applies the singular value decomposition (SVD) on {log[m(x,t)]-a(x)} to obtain 

 

),()()()()],(log[ txtkxbxatxm ε++= .    (1) 

The purpose of using SVD is to transform the task of forecasting an age-specific 

vector log[m(x,t)] into that of forecasting a scalar k(t), with minimized modeling error 
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2 ),(ε . The second stage of the LC method is to adjust k(t) to fit the reported 

life expectancy at time t, ignoring the small increase in fitting errors that results. This 

second stage makes the model fit historical life expectancy exactly (see also Booth et 

al., 2004). (The original LC method fits the observed total number of deaths in the 

second stage, but fitting life expectancy is simpler and works just as well. Some 

analysts prefer to skip the second stage and forecast the original k(t) directly.) The 

adjusted k(t) is then modeled using standard time-series methods. In most applications 

to date, it has been found that a random walk with drift (RWD) fits very well, 

although it is not always the best model overall. Unless some other time-series model 
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is found to be substantially better, it is advisable to use RWD because of its simplicity 

and straightforward interpretation. The RWD is expressed as follows:  

 

0))()((),1,0(~)(,)()1()( =++−= teseENtetedtktk σ ,      (2) 

 

where d is the drift term andσ the standard deviation of random changes in k(t). After 

estimating d and σ  in (2), k(t) at t>T is forecast stochastically, and then used to 

forecast ASDRs through (1). Tests were performed for the US in which forecasts 

based on data before certain dates were compared to corresponding observations after 

those dates (Lee and Miller, 2001). The resulting forecasts underestimated out-of-

sample mortality decline, but by substantially less than had official projections. The 

probability intervals were reasonably accurate. The 95% probability intervals covered 

97% of the subsequently observed life expectancies.  

 

 The ordinary LC method works well for a single population, which could be 

either one sex or two-sex combined. How to use the LC method to forecast mortality 

for the two sexes of a population, however, has been a problem. Dealing with two 

sexes separately, the b(x) for males in (1) and d in (2) would be different from those 

of females, and thus forecasts of male mortality would differ increasingly from 

forecasts for females over time, diverging in a way that has not been observed in 

history. Carter and Lee (1992) suggested using the same k(t) for both sexes but the 

sex-specific b(x)’s still lead to divergent forecasting. For instance, the male death rate 

was forecast to be ten times higher than the female at age 25 in year 2015, and even 

higher subsequently (Girosi and King, 2003, discussed similar problems with the LC 

method).     

 

In a study of provincial mortality forecasts for Canada, Lee and Nault (1993) 

pointed out the divergence problem and suggested using the same b(x) and k(t) for 

each province, but also remarked that such a solution would work only if the 

historical b(x) do not vary significantly by province. Similarly, a study (Tuljapurkar et 

al., 2000) that applied the LC method separately to the G7 countries found that over a 

50 year forecast horizon, the mean life expectancy gap between these countries 

increased from about 4 to 8 years. Is such an increased gap plausible? It might be. But 
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it would be hard to rationalize a continuing divergence of this sort in the more distant 

future. In the second half of the 20
th

 century, there was in general a faster increase in 

life expectancy in countries with higher mortality (United Nations, 1998). White 

(2002) found this to be true among developed countries as well. These results indicate 

that international life expectancy has been converging. If such differential rates of 

mortality decline were to hold in the future, life expectancy would begin to diverge 

after a formerly high mortality country overtook the old leaders and became the 

leading one itself (Lee and Rofman, 1994, encountered this problem in preparing 

forecasts for Chile). Such a change of leading country occurred many times in the 20
th

 

century (Oeppen and Vaupel, 2002), but the divergence in life expectancy did not. 

Instead, mortality decline in the new leading country decelerated, perhaps because it 

no longer had models to emulate once it became leader (Wilmoth, 1998). Therefore, it 

seems that long-term divergence in life expectancy is unlikely. To avoid divergent 

forecasting for members of a group of countries, the LC method should not be used 

for the individual populations separately. Aside from the problem of divergent 

forecasts, it seems likely that forecasts for individual countries could be improved by 

exploiting the additional information contained in the experience of similar countries.  

 

 In general, the problem can be put as follows. Consider a group of populations 

that have similar socioeconomic conditions and close connections. These populations 

could be males and females in the same country, different provinces or races in a 

country, different countries in a region, and so on. The definition of a group is 

intentionally left vague, and would depend on the forecaster’s judgment. Obviously, 

mortality differences between these populations should not increase over time 

indefinitely if the similar socioeconomic conditions and close connections were to 

continue. The question we address is how to use the LC method to forecast mortality 

for these populations. Lee (in press) proposed a general framework to solve this 

problem in which a common trend of life expectancy or k(t) is described in various 

models first, and individual countries are then projected to converge to this trend. This 

framework avoids the divergent problem in the long run, and allows diversity between 

countries in the short term. In this paper we build on the LC method to develop an 

approach within this general framework.  
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Extending the LC method 

 

To avoid long run divergence in mean mortality forecasts for a group using the 

LC method, it is a necessary and sufficient condition that all populations in the group 

have the same b(x) and the same drift term for k(t). If all populations have the same 

b(x) and drift term, then the ratios of the mean ASDRs between populations would be 

constant over time at each age in the forecasts, so the condition is sufficient. If a 

population’s b(x) or drift term differs from that of others, its forecast of some ASDR 

would differ from others’ increasingly over time, as shown in the appendix. Thus, the 

condition that the b(x) and the drift term of k(t) be the same for members of the group 

is also necessary. Since it is unlikely that two or more different k(t)s would have 

identical drift terms, in practice this necessary and sufficient condition requires that 

all populations have the same b(x) and k(t).  

 

Given that all populations in the group must have the same b(x) and k(t), 

which we denote B(x) and K(t), respectively, what values should these take? Consider 

a group of populations for which mortality is to be forecast. It is obvious that B(x) and 

K(t) should be chosen to best describe the mortality change of this whole group. 

Therefore, the B(x) and K(t) should be obtained from applying the ordinary LC 

method to the whole group, with the K(t) adjusted to fit the group’s average life 

expectancy
 i
, and then modeled as a RWD to forecast the common trend in future 

mortality change.   

 

The a(x) are estimated separately for each individual population in this group 

(a(x,i) for country i), since they do not cause long-term divergence and hence need not 

be the same for each population. Let the ASDR at age x and time t of the ith 

population be m(x,t,i). The a(x,i) should minimize the total error in modeling 

log[m(x,t,i)], and therefore can be obtained from the following ordinary least square 

regression (OLS): 
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Since K(t) sums to zero, a(x,i) is solved from  (3) as 

 

1

)),,(log(

),( 0

+
=
∑
=

T

itxm

ixa

T

t  ,     (4) 

 

which is the average over time of log(m(x,t,i)), just as when LC is applied to the ith 

population separately.  

 

 We call [a(x,i)+B(x)K(t)] the Common Factor model of the ith population. In 

this model, the change over time in mortality is described by B(x)K(t), which is the 

common factor for each population in the group. We could forecast mortality for the 

members of the group using this model, which would maintain the same ratios of 

ASDRs across countries that were observed on average over the sample period. The 

forecast would imply neither divergence nor convergence. In the remainder of the 

paper we will discuss a way in which this baseline Common Factor projection might 

be improved. However, this Common Factor model may be of interest in its own 

right, as well. 

 

We can construct an explanation ratio, denoted )(iRC , to measure how well the 

Common Factor model works for the ith population, 
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Without adjusting K(t), the )(iRC cannot be bigger than the explanation ratio of 

applying the LC method separately to the ith population (which we denote as )(iRS ), 

because B(x)K(t) does not minimize modeling errors for the ith population. If in the 

analyst’s judgment )(iRC  is too small, then a specific factor can be introduced to 

improve the performance of the Common Factor model, as explained below.  We do 

not suggest any formal test of goodness of fit. 
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The specific factor of the ith population describes the residual matrix of the 

Common Factor model, )]()(),()),,([log( tKxBixaitxm −− , which is an age vector 

changing over time. Following the strategy of the ordinary LC method, we apply the 

SVD to convert the task of modeling this time-varying vector into modeling a scalar 

k(t,i), and use a constant vector b(x,i) to describe the age pattern. In other words, the 

specific factor of the ith population, which we denote as b(x,i)k(t,i), is obtained using 

the first-order vectors b(x,i) and k(t,i) derived from applying the SVD to the residual 

matrix of the Common Factor model. Consequently, we obtain the Augmented 

Common Factor model as  

 

TtitxitkixbtKxBixaitxm ≤≤+++= 0),,,(),(),()()(),()),,(log( ε . (6) 

 

The last term in (6) represents modeling error; and b(x,i)k(t,i) allows for a short or 

medium term difference between the rate of change in country i’s death rates and that 

rate of change implied by the common factor. But if these differences persist over the 

long run, then the forecasts would be divergent. So this approach will only be 

successful if the k(t,i) factors each tend toward some constant level over time. In this 

way the fitted model will accommodate some continuation of historical convergent or 

divergent trends for each country, before locking into a constant relative position in 

the hierarchy of long term forecasts of group mortality. 

 

We can assess how well this model works for the ith population by 

constructing a new explanation ratio, which we denote as )(iRAC ,  
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The )(iRAC  is larger than )(iRC , since b(x,i)k(t,i) minimizes the modeling error of (6).  

 

The vector b(x,i) describes the differences between the patterns of change by 

age in mortality for the ith population and for the group as a whole. Because of this, 
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the values of b(x,i) may not be positive at all ages. Raising k(t,i) will increase the 

ASDR at ages where the values of b(x,i) are positive, but reduce the ASDR at ages 

when the b(x,i) are negative, with offsetting effects on life expectancy. For this 

reason, it may not be possible to choose a value of k(t,i) that exactly fits a given level 

of life expectancy, or if such a level exists, it may correspond to a significant 

reduction in )(iRAC . For these reasons, we do not adjust k(t,i) to fit the life expectancy 

of the ith population.   

 

Because the k(t,i) in (6) must tend toward a constant value for this approach to 

work, the approach fails if k(t,i) has a trending long term mean, as does the random 

walk with a non-zero drift term that is typically used in the ordinary LC method. 

Applications may succeed, however, if k(t,i) is a random walk without drift (RW) or a 

first-order autoregressive model (AR(1)) with a coefficient which yields a bounded 

short term trend in k(t,i): 

  

)1,0(~)(),(),1()()(),( 10 Nteteitkicicitk iiiσ+−+= ,  (8)        

 

where )(0 ic  and )(0 ic  are coefficients, and iσ is the standard deviation of the AR(1) 

model. The literature (e.g., Kendall and Ord, 1990:105) shows that parameters of AR 

models with a constant, of which (8) is the simplest, can be estimated by OLS using 

lagged values in the series as independent variables, that such OLS estimates are 

asymptotically unbiased and efficient, and that the goodness of fit can be naturally 

measured by the explanation ratio. If the )(iRAC  and the explanation ratio for the RW 

or AR(1) model of k(t,i) are large enough, and the estimated )(1 ic  is smaller than 1, 

then the ith population can be included in the group. Otherwise, it should be excluded 

from the group, or higher-order AR models should be used if the analysis of k(t,i) 

suggests so. 

 

 In summary, for the ith population, if )(iRC  is large enough, or if )(iRAC  is 

large enough and the k(t,i) can be well-modeled, it can be included in the group; 
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otherwise it should be excluded. However, these criteria, which are intentionally 

somewhat vague, should be tempered by judgment. If )(iRC is relatively small, but the 

reasons for the poor fit can be understood as due to historical forces that are deemed 

transitory, then the forecaster might decide to include that country in the group for 

forecasting purposes in any case. If a population is excluded from the group, the 

common factor and the other populations’ specific factor should be re-estimated, and 

whether another population should be included in the group should also be re-

examined repeating the above procedure.  

 

 We now turn to forecasting. The standard errors of the drift term, SE( d̂ ), of 

the AR(1) coefficients, SE( )(ˆ
0 ic ) and SE( )(ˆ

1 ic ), are well-known as: 
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where σ̂  is the estimated value ofσ  in (2), in which k(t) should be replaced by K(t); 

and iσ̂  is the estimated value of iσ  in (8). In forecasting, estimating errors should be 

taken into account, so the stochastic trajectories of K(t) and k(t,i) are: 
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where ε  and iη are standard normal variables and independent of each other. In the 

case where k(t,i) is modeled as RW, its forecast takes the form of K(t) with a zero 

drift term.     

 

The pure random terms in the models of K(t) and k(t,i), namely e(t) and )(tei , 

can be assumed independent because one describes the random effect that is common 

for the group, and another is specific for the ith population. Further, pure random 
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terms in the models of k(t,i) and k(t,j) can also be assumed independent, since they 

describe special random changes in different populations. Finally, subtracting (6) at T 

from that at t, the ASDR of the ith population in this group is forecast as  

 

TtiTkitkixbTKtKxBiTxmitxm >−+−+= )],,(),()[,()]()()[()),,(log()),,(log( . (11) 

 

In (11), the B(x)K(t) specifies the long-term trend and random fluctuations that are 

common for the whole group, while b(x,i)k(t,i) describes the short-term changes that 

are special only for the ith population.  

 

We call this procedure the Augmented Common Factor LC method, of which 

the ordinary LC method is a special case that uses only a specific factor. The strategy 

suggested by Lee and Nault (1993) is another special case, which includes only the 

common factor. The two-factor method is proposed in general form by Lee (in press), 

of which the Augmented Common Factor LC method is, perhaps, the simplest 

realization based on the ordinary LC method.
ii
      

 

Remarks 

 

 In a typical population, age-specific death rates have a strong tendency to 

move up and down together over time. The LC method utilizes this tendency by 

modeling the changes over time in ASDR as driven by a scalar k(t). Although such a 

strategy implies that the modeled death rates are correlated perfectly across ages, we 

believe this is preferable to modeling these inter-age correlations in detail. However, 

some analysts have done so, such as Denton et al (2001), and the U.S. Congressional 

Budget Office (2001).   

 

 In a properly defined group, all populations’ age-specific death rates should 

tend to move up and down together over time, a tendency captured by the common 

factor. For each individual population, however, we expect its mortality change will 

differ from that described by the common factor. If this difference is systematic and 

significant, a specific factor for this individual population is required. When this is 

done, the modeled changes in ASDR would be neither perfectly correlated across age 
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within one population (because it has two components) nor entirely independent 

between populations (since they have a common component).  

 

We should also mention that coherent forecasts of ASDR guarantee non-

divergent forecasts of life expectancy in the long run. But in the short term, the 

change in a population’s ASDR or life expectancy may differ from those others, 

diverging or converging. There are other ways to avoid divergent forecasts. For 

example, Vaupel and Schnabel (2004) suggested the common trend be the 'best-

practice' mortality decline (see Oeppen and Vaupel, 2002), and that life expectancy of 

individual populations converge to this common trend through various AR models.     

 

Applications  

 

Two-sex forecast 

 

 We first apply the Common Factor LC method to forecast two-sex mortality
iii

, 

which is usually necessary in population forecasting, taking Sweden as our example. 

Following the suggestion of Lee and Miller (2001), we use data starting from 1950 to 

avoid non-linear k(t), through the last available year 2002, from the Human Mortality 

Database. The explanation ratios are shown in Table 1. 

 

(Table 1 here) 

 In Table 1, we judge the )(iRC  to be quite high for each sex, so we conclude 

that the two populations’ mortality can be forecast coherently, at least by the Common 

Factor model.
iv

 As higher )(iRAC  indicates that a specific factor improves the fit 

considerably, we move forward to model the k(t,i). The negative explanation ratios 

for the RW model indicate that it was worse than treating k(t,i) as a pure random 

variable
v
 , which is, however, not feasible, because in forecasting errors should be 

correlated and accumulated over time. We therefore turn to the next feasible and 

simplest model, namely AR(1). Since the explanation ratios of the AR(1) model are 

smaller than )(iRC  before rounding up, to introduce a specific factor is, in fact, to 

“improve” a better model by using a worse one. And even if the explanation ratio of 
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AR(1) were marginally higher than )(iRC , it might well not be worth introducing a 

specific factor that would bring additional complexity. Thus, we conclude that 

coherent forecasts should be made by using the Common Factor model. The median
vi

 

values of life expectancy, from coherent and separate LC forecasts, are compared in 

Figure 1. The difference between male and female life expectancies was 4.4 years in 

2002, and is forecast as 3.0 and 7.6 years in 2100 by coherent and separate LC 

forecasts, respectively. Although the divergent trend in life expectancy, from 4.4 in 

2002 to 7.6 years in 2100, may be acceptable to some readers, the problem of separate 

forecasts emerges more sharply in the ratio of male to female median ASDR. At year 

2002, this ratio was 1.16 at age 0. In separate forecasts, however, it becomes 0.74 at 

year 2100, implying that the death rate at age 0 for males would be lower than that of 

females, which cannot be justified by empirical evidence. On the other hand, in the 

Common Factor model, this ratio remains at the 2002 level at any time and for every 

age, which is the simplest approximation to the historical coherent trend. The 

convergent trend between life expectancies of males and females, from 4.4 in 2002 to 

3.0 years in 2100, is a consequence of the general decline in ASDR, not a result of 

convergence between the ASDR of males and females. 

 

(Figure 1 here) 

 

Group forecast 

 

The second application is to forecast mortality coherently for the 15 low 

mortality countries in the Human Mortality Database, as listed in Table 2. 

Supplemented by data from the World Health Organization used by Tuljapurkar, et al. 

(2000), these 15 countries’ ASDR and age-specific populations are available for a 

common period from 1952 through 1996. Using these data, we calculate average 

ASDR across the 15 countries, weighting by their population sizes. The B(x) and K(t) 

are then obtained using the ordinary LC method, yielding patterns which are typical 

for low mortality countries as shown in Figure 2. The explanation ratios are listed in 

Table 2. 

 

(Figure 2 here) 
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(Table 2. here) 

 

 Except for Denmark, Japan, Norway and the US, the values of )(iRC  are 

higher than 0.82, suggesting that there indeed exists a common trend, and that the 

Common Factor model captures this trend quite well. The mortality of the 11 

countries with high )(iRC can be coherently forecast by the Common Factor model. 

There remain four other countries whose )(iRC are low enough to be troubling, and 

we now investigate whether they can be included in the low-mortality group through 

use of specific factors b(x,i)k(t,i). Since adding a specific factor must always improve 

model performance, we introduce b(x,i)k(t,i) for all the 15 countries. For many 

countries, we find negative values of b(x,i) over a substantial range of ages as shown 

in Figure 3. In these cases, a second stage fitting life expectancy would require large 

changes in k(t,i) and result in significant reductions of )(iRAC as discussed earlier.  

 

(Figure 3 here) 

 

The values of )(iRAC  are higher than 0.84 for all countries as can be seen in 

Table 2, suggesting that we should move to the next step of modeling the time series 

of k(t,i). The explanation ratios show that the RW model does not work well for any 

country, but the )()1( iRAR  is higher than )(iRC  for the eleven countries listed in Table 

3. Examples of two typical k(t,i) that can be successfully modeled as AR(1) are 

plotted in Figure 4.  

 

(Table 3. here) 

(Figure 4 here) 

 

For countries in Table 3, introducing an AR(1)-specific factor improves the 

model, which is feasible since the values of )(1̂ ic are smaller than 1. Although the 

)(1̂ ic  for Denmark is very close to 1, which makes the k(∞,i) significantly higher than 

the others, the probability that the true value of )(1 ic  is larger than 1 is only 0.35 since 

the error in estimating )(1 ic is small. Fortunately, Denmark, Japan, Norway and the 

US are among the countries for which the AR(1) model fits adequately, with the 
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lowest explanation ratio 0.84. We suggest that all 15 countries be included in the low-

mortality group, although whether 0.84 is a high enough threshold for inclusion could 

be questioned. 

 

We now turn to forecasting. For the K(t) shown in Figure 2, the drift term and 

its standard error are estimated as -0.401 and 0.046, respectively. The K(t) and k(t,i) 

are then forecast using (10), and m(x,t,i) using (11). Figure 5 illustrates (for selected 

countries and age groups) how the Augmented Common Factor LC method 

guarantees that long-term forecasts are non-divergent while allowing short-term 

diversity. In Figure 5, the values of log[m(x,t)/m(x,T)] for the age group 20-24 are 

shown both within sample (t≤T=1996) and for forecasts (t>T). For this age group the 

death rate in Japan declined faster historically than in the fitted Common Factor 

model, which in turn dropped faster than that of the US, as displayed by the three 

curves for t<T. For t=T, of course, each curve passes through zero by construction. 

How does projected mortality change in the future? If we were using just the 

Common Factor approach, the curves for both the US and Japan would follow the 

central Common Factor line. However, with the Augmented Common Factor method, 

the trends relative to the Common Factor are projected to continue for a while in the 

future, although eventually their position relative to the Common Factor stabilizes. 

 

(Figure 5 here) 

 

The coherent forecasts of life expectancy for Japan, the US, and Denmark are 

listed in Table 4 and shown in Figure 6. Forecasts of life expectancy using the 

ordinary LC method separately for each country are displayed in Figure 6 and Table 

4, for comparison. We see that the forecast for Japan is for smaller increases than 

under the separate LC method, while it is for larger increases for the US and 

Denmark, two countries that have lagged during the historical period. The standard 

deviation of life expectancy between these 15 countries was 1.2 years in 1996. 

Applying the ordinary LC method separately, this standard deviation is 2.5 years in 

2050 for the median forecasts, more than double of that in 1996. Using the 

Augmented Common Factor LC method, this standard deviation is 1.3 years in 2050, 

which is almost the same as 1996, illustrating the non-divergence of the forecasts. On 
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the other hand, the uncertainty of the life expectancy forecasts can be described using 

a large collection of stochastic trajectories given by (10). To obtain a smooth median 

forecast and 95% confidence intervals, we found 500 trajectories are enough and 

hence used them in this paper for K(t) and each k(t,i). Averaging across countries, the 

95% probability interval is reduced from 6.1 years in the ordinary LC method to 4.9 

years in the Augmented Common Factor LC method. A possible explanation is that 

the common factor used in the Augmented Common Factor LC method tends to 

reduce random changes that are not perfectly correlated between countries.  

 

(Figures 6 here) 

 

(Table 4 here) 

 

Forecasts for out-of-group populations 

 

Sometimes a population might not be regarded as belonging to a certain group 

in the past, but we might expect its mortality to follow the group’s in the future. This 

might be so for minorities in a nation, or for those living in a remote area of a country. 

The remaining six countries in the Human Mortality Database, Bulgaria, the Czech 

Republic, former East Germany, Hungary, Lithuania and Russia might also be viewed 

in this way, relative to the group of 15 low mortality countries. Although these 

countries were not in the low-mortality group in 1952 to 1996, they might catch up to 

and join the low-mortality group in the future. Arguably the experience of the low 

mortality group is a better guide to their future than would be their own histories. We 

can formally apply the Augmented Common Factor LC method to these countries, 

just as we did for countries in the low-mortality group. The only difference is that 

these out-of-group countries do not contribute to formulating the common factor 

B(x)K(t), since we believe that their history was governed by a different process. 

Imposing the common factor on the six populations, we find the explanation ratios 

shown in Table 5. 

 

(Table 5 here)   
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 It can be seen that for Russia, the )(iRC  is negative, indicating that the 

common factor makes fitting worse than using only a(x,i), which suggests that the 

common trend of mortality change in low-mortality countries did not exist in Russia 

for the period of interest. Similar situations are identified by the small values of )(iRC  

for all these East European countries. Moreover, the Augmented Common Factor 

model does not work for Russia either, because its )(iRAC is only 0.46. It is clear that a 

coherent forecast for Russia cannot be made using the Augmented Common Factor 

LC method, regardless of how its k(t,i) is modeled.  

 

The values of )(iRAC  for the other five populations encourage us to proceed to 

model k(t,i), though it is debatable whether the 0.71 for Bulgaria is high enough. 

Again, the RW model does not work, and results for the AR(1) are listed in Table 6. 

 

(Table 6 here) 

 

For Bulgaria and Hungary, the estimated AR(1) coefficient is >1. Although higher-

order AR models may be introduced, the k(t,i) for these countries, shown in Figure 7, 

do not seem promising. We therefore abandon using the Augmented Common Factor 

LC method to forecast mortality for Bulgaria, Hungary and Russia.  

 

(Figure 7 here) 

 

The life expectancies of the Czech Republic, former East Germany, and 

Lithuania, forecast by coherent and ordinary LC methods, are compared in Table 7.   

 

(Table 7 here) 

 

It can be seen that in 2050, coherent forecasts yield higher life expectancy than 

the separate forecasts. Life expectancy in Lithuania is forecast to reach 77.5 in 2050 

in the coherent forecast, which seems much more plausible than the 66.6 projected by 

LC used separately. Contrary to the case of the low-mortality group, the forecasting 

uncertainty is greater for the coherent forecasts. The smaller uncertainty estimated for 

the separate forecast, however, does not have a solid basis. To see this, consider 
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Lithuania as an example, for which data start from 1960. In a separate forecast, the 

k(t) increases over time and b(x) has negative values only at young ages, as shown in 

the first and second panels of Figure 8. This indicates that, in the historical period of 

interest, the death rate declined at young ages but increased elsewhere. Forecasting 

such a trend to continue would yield highly implausible results. This is reflected in the 

third panel of Figure 8, which shows the median and 95% probability intervals of 

forecast life expectancy. It can be seen that the median forecast of life expectancy 

declines over time. In the coherent forecast, the normal B(x) and K(t) in Figure 1 

produce a decline in mortality at all ages, at least in the long term, and forecast life 

expectancy rises over time, as shown in the fourth panel in Figure 8.      

 

(Figure 8 here) 

 

Discussion 

 

 The Augmented Common Factor LC method derived in this paper aims to 

model and forecast mortality for a group of populations in a coherent way, taking 

advantage of commonalities in their historical experience and age patterns, while 

acknowledging their individual differences in levels, age patterns and trends. 

Populations that are sufficiently similar to be grouped together may nonetheless have 

somewhat different mortality histories. Our approach here is based on the idea that 

such past differences should not lead us to expect continuing long run divergence in 

the future, but neither should we expect the future to obliterate all past differences.  

 

Populations may be treated as a group when they have similar socioeconomic 

conditions and close connections, and that these are expected to continue in the future. 

Obviously these criteria are vague, and require subjective judgment to apply. 

Geographic proximity may sometimes be deemed relevant and sometimes not. 

Certainly, though, these conditions should usually be met by the male and female 

populations in any region. Application to sex-specific mortality in Russia with its very 

large differences would be a useful experiment. Application to sex differences in 

mortality trends resulting from historical differences in smoking behavior in many 

industrial nations would also be a valuable experiment. 
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 The 15 low-mortality countries in the HMD also seemed to satisfy these 

criteria for group inclusion, though their socioeconomic conditions still differ, and 

some are more closely connected than others. The trend toward regional integration 

and globalization should only strengthen the case. We would not expect the mortality 

of these populations to diverge over the long run.  

 

The method we propose first identifies the common trend of mortality change 

in these populations by fitting a standard LC model to their aggregate. This common 

model describes a common rate of change for mortality at each age. However, these 

common rates of change are applied to different initial levels and age patterns of 

mortality in each population, resulting in the Common Factor model. Forecasts then 

preserve in perpetuity the ratios of the populations’ ASDR. Some populations’ 

mortality change can be adequately described and forecast by the Common Factor 

model, as reflected by the minor difference between the )(iRC  and )(iRS  in Table 2, 

which implies similarity in historical mortality change among populations. We were 

encouraged to find that 11 out of 15 of the populations could be modeled quite well 

by the common factor, confirming the existence of a common pattern of mortality 

change for the low-mortality countries. For these 11 countries, life expectancy 

forecasts to 2050 differ little whether we use the Augmented Common Factor model 

or apply the ordinary LC method separately, as was shown in Table 4.  

 

Mortality in Denmark, Japan, Norway and the US was not fit well by the 

Common Factor model. However, adding a population-specific component to the 

model substantially improved the fit. This component describes the particularities of 

individual country experience in the sample period, and projects these particular 

trends to continue to a limited extent, as shown in Figure 5. If there were no trend in 

k(t,i), or if any trend were extended linearly, then this augmented Common Factor 

model would reduce to the ordinary LC method provided that the b(x,i) were similar 

to B(x). This line of thought suggests that the Augmented Common Factor model 

would forecast mortality decline faster than the ordinary LC when ),( ik ∞  is positive, 

and vice versa. In fact, this is what happens. The forecasts of life expectancy for 

Denmark, Norway and the US, based on the Augmented Common Factor LC method, 
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are higher than those based on the ordinary LC method, and their ),( ik ∞ s are 

positive. These forecasts are lower for Japan, however, whose ),( ik ∞  is negative. For 

these four countries, the differences between the results of the Augmented Common 

Factor method and the ordinary LC method are somewhat larger than for the other 

low mortality countries, for which the basic Common Factor model worked well, as 

can be seen in Table 4.  

 

 We conclude that the Augmented Common Factor LC method works well for 

the 15 low-mortality countries as a group. It also appears to work well for a two-sex 

mortality forecast. The basis of this success is a real coherent trend in mortality for the 

two sexes and within the low-mortality group. The method would not work, or at least 

not so well, without such a basis.  

 

 In some cases, populations that had rather different mortality histories than 

some reference group may nonetheless be expected to behave like that group in the 

future. The Augmented Common Factor method can be used to assess on statistical 

grounds whether one or more populations could be viewed as following the mortality 

change of another group. However, statistics aside, one might have other reasons for 

choosing to assume such a pattern in the future. Here we only consider the statistical 

reasons. We take East European countries in the Human Mortality Database as an 

example. Applying the Augmented Common Factor LC method to these countries, we 

found that the Czech Republic, former East Germany and Lithuania could be treated 

as following the low-mortality group, but Bulgaria, Hungary and Russia could not.  

 

Even if one were interested only in a forecast for a particular country such as 

the US, we believe it would improve the forecast to place it in an international 

context, drawing on the experience of similar countries. The methods developed in 

this paper are a step in this direction.   
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Appendix 

Let there be two populations i and j, so two drift terms d(i) and d(j). Let’s 

focus on age group x, so there are two values of b(x,i) and b(x,j). In general, d(i) and 

b(x,i) are non-zero and: 

∑∑
≠≠

=+=+
xyxy

jybjxbiybixb .1),(),(,1),(),(   (1a) 

There are nine asymptotic situations as in the followed table. 

 

Table 1a. Nine situations of drift terms and b(x,i) and b(x,j) 

 d(i)=d(j) d(i)>d(j) d(i)<d(j) 

b(x,i)=b(x,j) 
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b(x,i)>b(x,j) 
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If not diverge at x when 

),(),()(),( jdjxbidixb =  then 

must diverge at another age y, 

since it is impossible to have  

),(),()(),( jdjybidiyb =  

for all y≠x, according to (1a). 

b(x,i)<b(x,j) 
∞=]

),,(

),,(
log[

jtxm

itxm
 

If not diverge at x when 

),(),()(),( jdjxbidixb =  

then must diverge at 

another age y, since it is 

impossible to have 

),(),()(),( jdjybidiyb = for 

all y≠x, according to (1a). 

∞=]
),,(

),,(
log[

jtxm

itxm
 

 

It can be seen from above table that for any x, m(x,t,i) diverges from m(x,t,j) if 

d(i)≠d(j) or b(x,i)≠b(x,j). Therefore, d(i)=d(j) and b(x,i)=b(x,j) is the necessary 

condition for m(x,t,i) does not diverge from m(x,t,j).     
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Table 1. Explanation ratios of male and female populations of Sweden    

 Separate-LC 

explanation 

ratio  

)(iRS  

Common 

Factor 

explanation 

ratio  

)(iRC  

Augmented 

Common 

Factor  

explanation 

ratio 

)(iRAC  

The RW 

explanation 

ratio 

)(iRRW  

The AR(1) 

explanation 

ratio

)()1( iRAR  

Male            .86   .88  .93  -5.46 .88 

Female           .93          .89  .93  -6.81 .88 
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Table 2. Explanation ratios of 15 low-mortality populations    

 Separate-LC 

explanation 

ratio  

)(iRS  

Common 

Factor 

explanation 

ratio  

)(iRC  

Augmented 

Common 

Factor  

explanation 

ratio 

)(iRAC   

The RW 

explanation 

ratio 

)(iRRW   

The AR(1) 

explanation 

ratio

)()1( iRAR   

Austria            .94    .91   .95  -5.04 .87 

Canada            .96          .94  .98  -4.72 .87 

Denmark        .83          .39  .84     .01 .98 

England         .95          .84  .96  -1.21 .96 

Finland           .94         .92  .94 -15.72 .68 

France             .94          .88  .95  -1.98 .94 

Germany(W)   .97          .92  .96  -3.66 .90 

Italy                .93          .91  .96  -1.64 .95 

Japan             .97          .77  .98     .33 .99 

The Netherlands   .93          .82  .93  -2.16 .94 

Norway         .88          .70  .90    -.44  .97 

Spain  .90  .86  .94  -2.80 .94 

Sweden           .93          .88  .93  -3.43 .91 

Switzerland    .93          .88  .94  -3.75 .90 

USA              .96         .78  .96     -.98 .96 
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Table 3. Results of fitting the model of AR(1) with constant 

 )(ˆ
0 ic  ))(ˆ( 0 icSE  )(ˆ

1 ic  ))(ˆ( 1 icSE  }1)(Pr{( 1 ≥ic

 

),(ˆ ik ∞  iσ̂  

Denmark       .14 .05 .99  .02 .35 17.88 .33 

England        .07 .04 .93 .03 .02 1.06 .24 

France            .02 .03 .95 .04 .12 .44 .18 

Italy               -.02 .02 .92 .04 .01 -0.27 .12 

Japan            -.27 .05 .95 .01 <.01 -5.61 .34 

The Netherlands  .10 .05 .94 .04 .04 1.61 .33 

Norway        .10 .05 .95 .03 .03 2.03 .33 

Spain -.05 .04 .86 .04 <.01 -.35 .25 

Sweden          .03 .04 .93 .05 .06 .47 .28 

Switzerland   .01 .02 .95 .05 .18 .23 .12 

USA             .10 .04 .98 .03 .24 4.39 .28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 34

 

Table 4. Life expectancies at time t, e(t), of low-mortality countries    

  e(1996) Median of 

e(2050) 

from 

coherent 

forecast 

Median of 

e(2050) 

from 

separate 

forecast 

The 95% 

confidence 

interval of 

e(2050), 

from 

coherent 

forecast 

The 95% 

confidence 

interval of 

e(2050), 

from 

separate 

forecast 

Austria           77.4 84.8 84.9 3.8 4.8 

Canada           78.4         86.3 85.4 4.2 3.5 

Denmark       75.8 82.2 80.1 10.6 9.1 

England        77.1         84.9 83.7 4.8 5.9 

Finland           76.9        84.7 85.8 4.1 7.9 

France            78.0         85.8 86.7 4.2 6.5 

Germany(W)  77.1         84.8 84.6 3.8 4.8 

Italy               78.5         86.1 87.1 4.1 6.7 

Japan            80.5         88.1 90.9 4.3 4.7 

The Netherlands  77.6         85.4 83.0 4.5 6.5 

Norway        78.2        85.2 83.0 6.1 6.5 

Spain 78.2 85.9 86.2 4.0 6.8 

Sweden          79.0         86.1 85.6 4.5 6.0 

Switzerland   79.1         86.5 87.5 4.5 6.1 

USA              76.3        84.9 84.0  5.4 5.7 

15 countries SD=1.2 SD=1.3 SD=2.5 Mean=4.9 Mean=6.1 
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Table 5. Explanation ratios of 6 East-European populations    

 Separate-LC 

explanation 

ratio  

)(iRS   

Common 

Factor 

explanation 

ratio  

)(iRC   

Augmented 

Common 

Factor  

explanation 

ratio 

)(iRAC   

The RW 

explanation 

ratio 

)(iRRW   

The AR(1) 

explanation 

ratio

)()1( iRAR   

Bulgaria         .79    .09  .71 -3.96 .89 

The Czech 

Republic 

 .89  .35  .91  -.47 .97 

Germany (E)           .91          .61  .88 -2.27 .93 

Hungary        .83          .09  .91  -.01 .98 

Lithuania  .85  .39  .84  -.50 .96 

Russia        .73          -3.48  .46   
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Table 6. Results of fitting AR(1) for the 6 East-European populations 

 )(ˆ
0 ic  ))(ˆ( 0 icSE  )(ˆ

1 ic  ))(ˆ( 1 icSE  }1)(Pr{( 1 ≥ic

 

),(ˆ ik ∞  iσ̂  

Bulgaria          .19 .21 1.00 .05 .62    

The Czech 

Republic  

.12 .07 .98 .03 .23 5.84 .47 

Germany(E)          .10 .08 .93 .04 .05 1.42 .54 

Hungary       .18 .08 1.01  .02 .68   

Lithuania .28 .16 .98 .03 .39 16.54 .93 
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Table 7. Life expectancies at time t (e(t)) of selected East European countries  

  e(1996) Median of 

e(2050) 

from 

coherent 

forecast 

Median of 

e(2050) 

from 

separate 

forecast 

The 95% 

confidence 

interval of 

e(2050), 

from 

coherent 

forecast 

The 95% 

confidence 

interval of 

e(2050), 

from 

separate 

forecast 

The Czech 

Republic 

73.8 80.8 78.6 14.7 7.4 

Germany(E) 75.5 83.2 81.1 7.2 7.9 

Lithuania 71.5 77.5 66.6 26.1 13.9 

3 countries SD=2.0 SD=2.9 SD=7.8 Mean=16.0 Mean=9.7 
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i
If our goal is to fit the experience of each country as well as possible, then this could 

be done by averaging the mortality rates across unweighted members of the group. 

 
ii
 Girosi and King (2003) point out that anomalies in age-specific death rate trends for 

a specific country can lead projected future trends to diverge in implausible ways 

when the Lee-Carter method is used. The methods developed in this paper, although 

intended for a different purpose, will also reduce this problem to the extent that it is 

due to transient features of a population’s mortality history. 

 
iii

 For a number of years, researchers at the University of California at Berkeley, 

Mountain View Research, and Stanford University have been forecasting sex-specific 

mortality using a procedure very similar to the Common Factor model, with a 

common k(t) and b(x), but different a(x). However, this procedure has not been 

described in any publication. 

 

iv In Table 1, the outcome that )()( iRiR SC >  for males is the possible but deviant 

result of adjusting k(t) in the ordinary, and K(t) in the Augmented Common Factor, 

LC method. This outcome would not be possible for first stage estimates. 

 

v
 The explanation ratio for the RW or AR(1) in (8) is 

)],(var[
1

2

itk
R iσ−= . For AR(1) 

the minimum value of R would be 0 if minimizing σi resulted in c0=c1=0. Because 

fitting RW does not minimize σi but merely sets it as ∑
=

−−−
T

t

Ttktk
1

2 )1/()]1()([  by 

forcing c0=0 and c1=1, the R of RW can be negative, which implies that the modeling 

error of RW is larger than that of treating k(t,i) as a pure random variable.    

 
vi

 LC forecasts have a central value equal to the median, not the mean, mortality level. 

This is because fitting and forecasting are initially done on the log-transformed 

ASDR, and then these forecasts are non-linearly transformed (exponentiated) to get 

the ASDR. 

 

  


