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[Extended Abstract] 
 

INTRODUCTION: 
 

 Among the methodological investigations carried out in estimating life expectancies at 

older ages beyond age 70, the techniques developed by Horiuchi and Coale (1980), Mitra (1984) 

and Lahiri (1990) are worth noting. It may be noted that all the techniques referred above are 

based on the assumption of sectional stability at older ages (age 65 and above). Because of 

considerable increase in public health awareness and remarkable development in medical 

sciences during the later half of the twentieth century, particularly during the last three decades, 

the overall longevity including that at older ages has also increased considerably worldwide 

including in many less developed countries. As a result age-specific growth at older ages have 

also increased considerably over time in various developed and less developed countries, hence 

the assumption of approximate stability may not be tenable in such countries. Thus, an attempt 

has been made in this paper to develop a technique for estimating life expectancies at older ages 

in a destable population following Generalized Population Model (GPM) of age-structure 

applicable to any population (Bennett and Horiuchi, 1980; and Preston, et.al., 1982). 

 

METHODOLOGY: 

 

The Generalized Population Model 
 

 According to a destabilized or generalized population model which is applicable 

to any population, the function N(x; t) describing the age-structure of any population at time t is 

given by the following equation (Bennett and Horiuchi, 1981; Preston and Coale, 1982): 
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where,   B(t) :  Number of births at time t;   

 

r(y; t): Instantaneous rate of growth of persons aged y at time t; 

 

p(x;t): Probability of surviving from birth to exact age x according to the stationary  

population associated with the destabilized population at time t.  

 

Estimation of the Ratio – e(x+10)/e(x) under GPM using the Age-data at any Two points of 

Time (not necessarily multiple of 5 or 10 years apart) 

 

In life table terminology p(x;t) = l(x; t)/l(0; t), where l(x; t) denotes the number of 

survivors at exact age x out of the initial birth cohort l(0; t) in the stationary population. 

Taking l(0; t) = B(t), one can easily find the following expression for l(x; t) from the equation 

(1), for the convenience and simplicity the ‘argument’ t will be omitted henceforth : 
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Now, by definition T(y), the person-years lived beyond  age y, can be written as: 
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du)u(rexp)y(N)y(T  …………(3), where N(y+) represents the 

number of persons aged y and above. The equation (3) can be obtained by integrating both sides 

of (2) in the age-range (y, ω), where ωωωω being the maximum age attainable by a person in the 

population under study, and according to the first mean value theorem of integral calculus, there 

exists a point (age) Cy+ lying between the ages y and ωωωω such that the identify (3) holds true. 

Remembering that e(x) = T(x)/l(x), it can be shown by using the equations (2) and (3) for y = x 

& x+10 that the ratio e(x+10)/e(x) can be expressed through the following formula: 
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According to the first mean value theorem of integral calculus there exists two points
1
 (ages) -- 

++++xC  and ++++++++ )10x(C  in the open intervals (x, ωωωω) and (x+10, ωωωω) such that the identity (3) holds true 

for y = x & x+10. The quantities [[[[ ]]]])x(N)x(Nb x ++++====  and (((( ))))[[[[ ]]]]++++++++++++====++++ 10x(N)10x(Nb 10x  in the 

above equation, which represent the birth-day rates or the rates of arrival of persons at ages ‘x’ 

& ‘x+10’ respectively. The values of xb ’s have estimated through the adopted by Preston and 

Lahiri (1991). 

 

Discrete Approximation of the Ratio – e(x+10)/e(x) 
 

 

 To obtain an approximation of the ratio e(x+10)/e(x) in discrete case, it is necessary to 

evaluate the integrals in the R.H.S. of the formula (4). Assuming that the growth curve ( xr ) 

follows a second-degree polynomial
2
, an approximate discrete version of the expression in the 

R.H.S of equation (4) can be obtained through the following approximation after evaluating the first 

integral through the Simpson one-third rule of numerical integration, and evaluating the second 

integral by splitting the whole domain   of integration (x, x+10) into two sub-intervals of equal size -

- (x, x+5) and (x+5, x+10) and noting that 5x&xyfor,du)u(rr
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1
 Though the exact values of ++++xC  and ++++++++ )10x(C  are not known, it can be shown that the two points (ages), 

mentioned above, are sufficiently close to the mean ages of persons aged ‘x & above’, and ‘x+10 & above’ 

respectively (Lahiri, 1983). 
2
 Empirical investigations with the age-data at two points of time of various countries (developed and developing 

countries) indicate that the growth curve ( xr ) at ages 45 and above resembles well to a second-degree polynomial 

(for details, see Lahiri and Menezes, 2004). 
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The quantities x5 r ’s and ++++xr ’s in equation (5) denote the exponential growth rates of persons in 

the age-groups (x, x+4) and ‘x & above’ respectively, and kr  represents the exponential growth 

rate at exact age k, the mid-point of the interval ( ++++xC , ++++++++ )10x(C ), which can be estimated as a 

weighted average of either ++++xr̂ and ++++++++ )5x(r̂ or ++++++++ )5x(r̂  and ++++++++ )10x(r̂ depending upon whether the age k, 

the mid-point of the interval ( ++++xC  , ++++++++ )10x(C ), belongs to the sub-interval S1 ≡ ( ++++xC , ++++++++ )5x(C ) or S2 

≡ ( ++++++++ )5x(C , ++++++++ )10x(C ) respectively. The statistic ++++ar̂  (for a= x, x+5, & x+10) stands for the estimated 

value of the exponential rate of growth of persons ages 'a & above' which can be obtained through 

the following formula: 

 (z)]P /m)+(zP [ ln . 
m

1
 = r̂  a5a55 a  ……….. (5.1), 

The quantities 5Pa(z) and 5Pa(z+m) in (5.1) represent enumerated number of persons in the age-

group (a, a+4) at time z and z+m respectively, m being the intercensal interval (not necessarily 

multiple of 5).  The value of kr̂ in the formula (5) can be obtained through either of the following 

approximations (Lahiri 2004): 
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The notations 5.2xh ++++  and 5..7xh ++++ , used in (5.2) and (5.3), are the widths of the sub-intervals S1 and 

S2 respectively. One can easily verify from (5.2) or (5.3) that kr̂ will be exactly equal to ++++++++ )5x(r̂ if the 

sub-intervals S1 and S2 are exactly of equal width, that is, when k coincides with ++++++++ )5x(C  , the mean 

age of persons aged ‘x+5 &  above'.  

 

Now, if somehow one can estimate an e(x) value at some older age, say at age a where 60 

≤≤≤≤ a ≤≤≤≤ 80, the other values of e(x)'s at older ages beyond age 65 years can be obtained by using 
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the estimated values of the ratio e(x+10)/e(x), denoted by x5 E , over ages obtained through the 

formula (5).  

 

 It has been shown elsewhere (Lahiri, 1983) that the age-pattern of the ratio x5 E remains 

almost unaltered over various mortality levels ( 0

oe ) within a specified model mortality pattern, 

but it differs considerably between different model mortality patterns under the same mortality 

level ( 0

oe ). This invariant property of 'E-values' over a broad range of mortality level within a 

specified model mortality pattern may be used in identifying a suitable model mortality pattern. 

After identifying the life table consistent with the observed x5 E -values from a suitable model 

life table system, five sets of e(x) values at ages 60 to 80 for a particular value of e(x), say at age 

a lies between 60 and 80 corresponding the selected life table, may be obtained by using the 

observed set of x5 E -values. The average of these five sets of e(x) values, provides final 

estimates of e(x) values at older ages. 

The Data Used and the Application: 

The proposed technique requires enumerated age-data at two points of time, not necessarily 

multiple of 5 years apart, of a closed population. To test the validity of the procedure, the present 

technique has been applied to different quality of age-data for various countries starting with Japan 

(1965-70), followed by Korea (1990-95), China (1982-90) and India (1981-91). The relevant age-

data were borrowed from the respective census enumerations of the countries. The estimated e(x) 

values at older ages, so obtained, are sufficiently close to those obtained through life tables based on 

age-specific death rates for the above countries during the afore-mentioned periods. 
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