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Wilmoth  Extended Abstract 

 
Overview of Project and Paper 
 

It goes without saying that the effects of timing changes on standard demographic 
measures, such as the total fertility rate (TFR) and life expectancy at birth (e0), have become a 
central preoccupation of methodologically oriented demographers in recent years.  Following the 
publication of two widely-discussed papers by Bongaarts and Feeney, in 1998 and 2003, it 
became clear that this is one topic that formal demographers care about very much, but about 
which we seem to disagree almost fiercely. 
 

The paper I am proposing will be nothing less than my third attempt to formulate a 
coherent argument on this topic.  The first paper was intended largely as a verbal critique of the 
BF tempo-adjusted measure of total fertility, with supplementary modeling and simulations in 
the second paper.  After months and indeed years of work, I abandoned any thought of 
publishing these unfinished works, because I wanted to approach this topic in a more 
constructive manner.  That was the genesis of the current paper. 
 

Bongaarts and Feeney have proposed tempo-adjusted measures of both fertility and 
mortality.  Despite the fact that the usual focus of my research has been on mortality, I have 
devoted most of my thinking about tempo issues to an analysis, reformulation, and elaboration of 
the BF fertility model.  I now propose a general model of the effects of timing changes in fertility 
on standard demographic measures.  From my perspective, it is important to emphasize the 
possibility of multiple interpretations of tempo change, and thus to eschew the notion of an 
adjusted “tempo-free” measure with general applicability. 
 

Although this new fertility model is less than a week old at this writing, I am cautiously 
optimistic about its usefulness for clarifying tempo issues in fertility.  The BF fertility model is 
the simplest case of this much more flexible model.  In the general model, tempo change is 
defined by linear shifts in percentiles, with slopes that can vary across the distribution of ages at 
birth.  With the sole assumption that the quantum of cohort fertility is unaltered (both in total and 
within each percentile segment), it is possible to derive a measure of the effect that such a timing 
change would have on period fertility (both age-specific and total rates) in the complete absence 
of changes in cohort quantum. 
 

In other words, the model is used to derive a hypothetical “pure” tempo effect, which 
would alter the level of period fertility by a certain amount completely on its own.  A 
shortcoming of the current approach is that it does not (yet) address the issue of simultaneous 
changes in cohort quantum, or interactions between tempo and quantum effects (it may be 
possible to add such things later on).  By formalizing the problem in this general way, we see 
much more clearly the importance of the key assumption in the BF adjustment procedure 
concerning the unchanging level of cohort quantum.  This assumption is not problematic so long 
as one adheres to a proper interpretation based on clearly articulated hypothetical situations. 
 

In fact, it is possible to turn around the hypothetical tale of tempo effects, in order to 
address a fundamentally different question.  For example, instead of asking how much period 
fertility might be suppressed purely as a result of tempo delay (assuming constant cohort 
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quantum), it is also possible (and perhaps equally valuable) to ask how much cohorts in this 
situation would need to raise their completed fertility above 2.1 (in a low-mortality population) 
in order to keep the period TFR at replacement level.  One insight that emerges from an analysis 
of tempo effects in fertility is that full population replacement requires that cohorts who delay 
their fertility must pay a price in terms of a higher level of completed fertility than would 
otherwise be necessary for this purpose.  This is an important point about what the BF adjusted 
measure does not tell us – despite comments in their original article suggesting that tempo-
adjustment demonstrates that low-fertility populations today are not as far from replacement 
level as everyone seems to think.  In such a context, the (unadjusted) TFR is the correct measure, 
and the cohort CFR would need to be tempo adjusted in order to make it comparable to the TFR, 
whenever there are substantial changes in fertility timing. 
 

In summary, concerning tempo effects in fertility, I am in full agreement that such effects 
exist and are crucial for understanding the relationship between cohort and period fertility levels.  
My new model provides, I believe, the most general approach yet proposed for measuring and 
analyzing such processes.  It is worth noting that it seems possible, using this model, to discern 
tempo effects on measures of fertility timing itself.  Admittedly, these are rather small effects 
and disappear entirely under an assumption of a parallel shift in percentiles of the fertility 
distribution, as assumed in the original BF model.  However, if one accept the formal definition 
of this concept (I am still undecided), we might conclude from this analysis that, indeed, 
measures of the timing of demographic events may also be subject to tempo effects.  This point 
is especially pertinent with regard to measures of mortality (which is all about tempo, with a 
fixed quantum). 
 

At this point in my analysis, I remain skeptical (although not entirely dismissive) of the 
notion that there are important tempo effects on measures of tempo itself.  It is possible to adapt 
my general fertility model to the case of mortality by focusing on the distribution of events 
(births or deaths) over the life course.  The main difference lies in the relationship between these 
two distributions and their associated schedules of age-specific rates.  In the case of fertility, 
rates are merely the distribution of (female) ages at birth multiplied by the quantum of total or 
completed fertility (per woman).  For mortality, on the other hand, death rates and the underlying 
force of mortality equal the probability distribution of deaths divided by an exposure-to-risk 
based on numbers of survivors. 
 

Thus, whereas the size of the synthetic cohort used in constructing period fertility 
measures is fixed (the TFR refers to the average fertility of a hypothetical group of women who 
survive through menopause), the base population to which age-specific death rates are applied 
when computing a period life expectancy at birth diminishes steadily over the life course.  Thus, 
tempo changes in mortality involve not only a shift in the timing and distribution of events (i.e., 
deaths) over the life course; they also invoke important secondary effects on implied 
survivorship.  The proper methodological approach and substantive interpretation of this more 
complicated process are not immediately obvious. 
 

My initial adaptation of the fertility model to mortality produced some results that I still 
find puzzling.  Some of these early results appear to be consistent in form and even magnitude 
with those of Bongaarts and Feeney.  I think this is because both approaches rely on similar but 
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rather questionable assumptions about percentile trends for both periods and cohorts (see 
discussion below). 
 

Clearly, I need to do much more work to address the issue of tempo effects in mortality 
adequately.  From one perspective, the BF adjusted  is merely an incompletely standardized 
mean age at death.  That is, it removes any effects of population age composition due to historic 
differences in birth cohort size.  However, it retains those effects of age structure resulting from 
past differences in cohort survivorship.  Life expectancy at birth, on the other hand, is based on a 
model of a stationary population in which both of these factors are held constant.  It is unclear 
why we would wish to reject a fully standardized measure of the mean age at death in favor of 
one that only partially removes the influence of population age composition. 

o

0e

 
 
Some Illustrations, Key Insights, and Formal Modeling 
 

To illustrate some of the points made in the preceding overview, in this section I will 
present assorted pieces of work that I have done so far.  Most of it concerns the fertility model, 
but I will also discuss my attempts to develop a formal mortality model briefly at the end. 
 
Fertility Model 
 

A few simple diagrams help to illustrate some of the key concepts.  Figure 1A shows the 
parallel linear shift (with slope r) of the BF fertility model.  However, the model has been 
modified so that tempo change is episodic rather than continuous.  The diagram provides a visual 
depiction of the lengthening of cohort reproductive intervals that occurs during the shift.   
Figure 1B presents a model with the same shift at upper ages but no changes at the lower end of 
the reproductive age range.  It also illustrates the lengthening of cohort reproductive lifetimes. 
 

In Figures 2A and 2B, the trend in the span of cohort reproductive intervals is compared 
to the trend in period total fertility (in the notation used here, a cohort born at time  attains age t ′

0α  at time t, and thus 0α+′= tt ).  Since the model was specified in terms of a period shift in the 
fertility age pattern, the trends are discontinuous for the period TFR but gradual for the cohort 
reproductive interval.  It is important to note the exact inverse relationship between these two 
quantities during the central part of the shift, which includes complete reproductive intervals for 
some cohorts.  In such cases the cohort reproductive interval is longer by a factor of 1/(1-r), 
which matches exactly the reduction in the TFR by a factor of 1-r. 
 

Figures 3A and 3B depict a pair of more general models.  The simple models of Figures 1 
and 2 might lead us to believe that the fertility-suppressing effect of tempo delay depends on an 
overall lengthening of cohort reproductive intervals.  In Figure 3A, however, the reproductive 
age range is held constant at both younger and older ages, and fertility rates during a gradual 
change of fertility regime are merely weighted averages of a preceding early-fertility pattern and 
a subsequent late-fertility schedule.  Formally, the age pattern of fertility in this model is defined 
as follows: 
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Although detailed results are not available for the model depicted in Figure 3A, a few 
moments of reflection should be enough to convince most people that, assuming a constant level 
of cohort completed fertility, the TFR from time  to  will be consistently lower than its 
constant level both before and after the shift.

0t 4t
1  This example helps to demonstrate that a 

lengthening of the total cohort reproductive interval is a sufficient but not necessary condition for 
producing a tempo effect (assuming constant cohort quantum).  In cases where there is a steady 
upward shift in the percentiles of the cohort distribution of ages at birth, each cohort experiences 
an increase in the time spent in most percentiles of the age distribution of births (especially 
within the central age range of relatively high fertility).  The direct effect of this lengthening of 
cohort reproductive lifetimes within fixed percentiles of the age distribution, combined with the 
assumption of a constant cohort quantum, is that the level of period fertility is reduced during the 
entire period of the shift (compared to what is observed both before and afterwards). 
 

The general fertility model considered here is depicted in Figure 3B.  Its main feature is 
its flexibility concerning fertility distributions:  any two fertility distributions can be used to 
describe fertility timing before and after the shift, during which cohorts experience linear 
changes in the percentiles of the age distribution of births.  The key result emerging from an 
analysis of this model is that the total effect of timing changes on period total fertility (assuming 
no change in cohort quantum) is a reduction in the TFR during the transition period by a factor of 

( )dyyryr ∫ −⋅=− )(1)(1 0φ  . 

This quantity is simly a weighted average across the entire age range of )(1 yr− , with weights 

equal to the baseline probability distribution of ages at birth, 
0

0
0

)()(
TFR

yfy =φ , and where  is 

the linear slope of the percentile associated with age y in the baseline fertility schedule. 

)( yr

 

                                                 
1 A simple proof consists of observing that the total volume of period fertility from time  to  equals a similar 
total for cohorts born from  to , less the two wedges that lie outside the transition period.  The assumption of a 
constant cohort completed fertility rate (CFR) assures that the average CFR for this range of cohorts equals the 
average TFR for the associated periods.  However, it is obvious that the two missing wedges contain relatively high 
levels of fertility, since each is more concentrated in an age range of relatively high fertility (compared to the other 
baseline schedule and thus also to the transitional period, which is an average of the two). 

0t 4t
0t ′ 4t′
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This result rests on only two key assumptions:  (1) that trends in all percentiles of the 
series of cohort fertility distributions are linear (over the period of the shift); and (2) that the 
quantum of a cohort’s childbearing between any two percentiles of its fertility age distribution is 
unaffected by the change of fertility timing.  Thus, we are assuming that all births postponed in 
the present period will still occur eventually. 
 

Formally, we assume that the cumulative distribution of cohort fertility by age during the 
period of the shift (beginning at time 0=t , as depicted in Figure 3A) is related to a baseline 
distribution as follows: 

)(),( 0 yTxc Φ=Φ  

where .  Thus, the proportion of its lifetime fertility that a cohort born at 
time T has been completed by age x, 

)()( 0 yrxTxy ⋅+−=
),( TxcΦ , equals the proportion implied by the baseline 

fertility schedule, , at age y.  We integrate this function to obtain the distribution of cohort 
fertility: 
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where )()( 00 yy Φ′=φ .  We then multiply by the (fixed) quantum of cohort fertility, which by 
assumption equals the TFR of the baseline fertility schedule: 
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Next, we equate the period fertility rate at age x and time t with the age-specific rate for 

the cohort born at time xtT −= : 
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where now .  Integrating this function with respect to age yields the result 
mentioned earlier: 
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This model can be used also to investigate the effect of timing changes on measures of 

fertility tempo, such as the mean age at childbearing.  For such purposes, it is convenient to write 
the formula for the age distribution of period fertility as follows: 
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where by definition 
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distribution. 
 
The mean age at childbearing using the baseline fertility schedule is defined as follows: 
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Similarly, we obtain the following formula for the period mean age at childbearing implied by 
this model: 
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where *0a , and *r  are analogous to 0a  and r , except that they are computed using  
instead of 

)(*0 yφ
)(0 yφ .  In the simple model depicted in Figure 1A, ryr =)(  for all y in the 

reproductive age range, and thus these two distributions are identical.  In this case alone, the 
mean age at birth during the shift lies along a linear trend linking the mean age of childbearing 
before and after the shift.  In all other cases, however, there is a discontinuity in the trend of the 
mean age of childbearing in this model, and its actual value deviates from the before-after trend.  
It may be appropriate to interpret this result as a tempo effect on measures of the timing of period 
fertility.  More work is needed on this topic, which is closely related to issues encountered in a 
discussion about possible tempo effects in mortality. 
 
 
Mortality Model 
 

It is possible to adapt the above fertility model to the case of mortality, although with 
some fundamental differences.  In both cases, )(0 yφ  describes the distribution of the event of 
interest (birth or death) over the life course.  However, in the case of mortality, the rate – which 
by definition is the link between the period and cohort age patterns – is based on the population 
of survivors, which diminishes with age (in contrast, the synthetic cohort of the standard fertility 
model has a constant size over the reproductive age range).  Thus, as with fertility, we define a 
model in terms of percentiles of cohort age distributions of deaths, which are constant for an 
initial period, shift linearly over some interval, and then stabilize again at constant levels.  This 
implies a surface of death rates, from which the period age distribution of deaths can be derived. 
 

With such a model, we do indeed recover something that might be interpreted as a tempo 
effect:  discontinuities at both ends of the trends in life expectancy at birth and in age-specific 
death rates (compared to those of the baseline distribution).  The size of the discontinuities is a 
direct function of the slope of change in percentiles across the age range.  Recall that tempo 
change in fertility had the effect of multiplying birth rates by )(1 yr−  across the age range.  
Perhaps not surprisingly, period death rates in the mortality model are affected in an equivalent 
manner:  they equal this same factor multiplied by the death rates of the baseline mortality 
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schedule.  Indeed, this result might have been expected, as it follows from the assumption of a 
linear shift in percentiles of the cohort age distribution of deaths.  As with fertility, whenever the 
time of passage across successive percentiles of the age distribution of an event goes up or down, 
there is an exact compensatory change in the rate of the event associated with that percentile – 
and this observation holds true for both kinds of rates. 
 

I am not sure that I understand the BF tempo model of mortality well enough to conclude 
that it involves a fundamentally similar process.  However, the form of the two mathematical 
results does appear to be somewhat similar, and both present the puzzle of a quite curious 
discontinuity in period trends.  In the case of the model I am describing here, the discontinuity in 
period trends appears to be due to the utter implausibility of its core assumption, which involves 
a sudden linear increase in cohort percentiles of mortality.  However, trends in cohort percentiles 
for ages at death are highly dependent on mortality experiences from earlier in life, and it would 
be quite unusual for a cohort to experience a sudden rise in such a manner (the assumed trend is 
not even continuous in its first derivative).  To achieve this sudden extension of its life course 
across the full age range, the cohort must drop its mortality rate immediately to a level 
substantially below its value before the shift.  In short, the model I have described is simply a 
bad model, and the implied discontinuity is meaningless.  (I will, of course, attempt to determine 
if a similar conclusion is warranted for the BF mortality model.) 
 

On the other hand, in the last few hours before finalizing this abstract, I have effectively 
turned the mortality model around, so that it now involves a linear shift in period percentiles of 
ages at death.  The initial results seem quite plausible, although I have not had time to check 
them carefully.  In the simple case of parallel linear shifts for percentiles of the period age 
distribution of deaths, life expectancy at birth increases linearly during all years of the shift at a 
rate of r.  If the duration of the shift is long enough to include some complete cohort lifetimes, 
then the rise in mean lifetime for such cohorts occurs at a rate of r/(1-r).2  Although period and 
cohort death rates are equivalent by definition in this model, cumulative hazard rates for cohorts 
differ from those for the periods in which they live roughly by a factor of 1/(1-r).  For example, 
in cases of delayed mortality, the cumulative mortality experience at age x is greater (by a factor 
of 1/(1-r), approximately) for the cohort born in year T, compared to the synthetic cohort of 
period xTt +=  at the same age. 
 

Unlike my first attempt, this model of tempo change in mortality yields results that are 
entirely plausible.  Moreover, they contain no suggestion of anything that might be interpreted as 
a tempo effect.  The relationships between period and cohort measures implied by this model 
seem (thus far) to present no puzzles.  Thus, these new results seem to confirm my previous 
                                                 
2 These are, in fact, the same slopes, and the two trends would appear as parallel lines if plotted on a Lexis diagram.  
The difference in their numerical values owes to the fact that the period slope is defined with respect to time of the 
event, , whereas the cohort slope is defined in relation to time at birth, t xtT −= , where x is the cohort’s age at 
time t.  For a fixed x, 1=dt

dT .  However, for the percentile slopes – as well as many measures of timing that can be 
derived from them – the associated age, x, is rising as a linear function of time, t , with a slope of , where y is 
the associated age in the baseline mortality schedule.  Therefore, 

)( yr
)(1 yrdt

dT −=  for a trend at some particular age, 
and rdt

dT −= 1  for a trend in mean values.  If r  is positive, then cohort time runs more slowly than period time.  As 
a result, from the standpoint of cohorts, changes occur more quickly than what is implied by the period trend.  Of 
course, just the opposite occurs when r  is negative. 
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belief that there are simply no relevant tempo effects in the case of mortality.  This is perhaps 
explainable by the fact that there is no set of questions analogous to the ones asked in the fertility 
tempo story.  In that case, given an observed rise in the mean age of childbearing, accompanied 
by a reduced level of period fertility, it is quite reasonable to ask hypothetically whether the 
lower-than-expected period quantum might be due merely to delayed reproduction, and thus 
might have no impact on the eventual completed fertility of cohorts. 

 
I can imagine no comparable story for mortality.  In fact, I see a very different story 

associated with these mortality models.  Whereas a constant level of cohort completed fertility is 
a central assumption of the fertility tempo model, the quantum of mortality is fixed automatically 
in the mortality model.  A behavioral model in which cohorts choose to die the same number of 
times – although sometimes they start dying more slowly in order to live longer – does not seem 
particularly useful.  It seems that the fundamental problem with a tempo model of mortality is 
that it has causation reversed.  It is not tempo delay that causes lower mortality rates, but rather 
lower mortality rates that cause tempo delay.  It should be possible to demonstrate the following 
points in some formal manner:  (1) that any reduction in death rates produces a predictable 
corresponding increase in average cohort lifetimes (mortality delay), (2) that lower rates and 
delayed ages at death are merely two ways of depicting the same historical changes, and 
therefore (3) that tempo changes in no way introduce a bias into our standard measures of 
mortality and longevity. 

 
 
Conclusion 
 
The above description offers a taste of the paper I would like to write for this session.  Clearly, 
many puzzles still wait to be solved.  To guide my work in this area, I have attempted to identify 
some key requirements for a unified approach to the analysis of tempo effects in mortality and 
fertility, and (by extension) in other demographic events as well.  Some of the main points are as 
follows: 
 

• It goes without saying that we need clear definitions of concepts, and this will only come 
through continued formal development of this topic.  For example, I believe that the 
fertility model I am proposing helps to clarify a key aspect of the intuition that underlies 
the BF fertility model.  It seems that the central idea is that tempo delay in fertility 
consists of a postponement of births without their cancellation (i.e., constant quantum).  
For this reason, the reduction in rates associated with timing delay is inversely related to 
the increase in time spent by cohorts as they progress between successive percentiles of 
the age distribution of births.  At least in the case of repeatable events, it becomes clear 
that the rate-suppressing effect of a tempo delay depends on:  (1) a key assumption (that 
the contribution to overall quantum that occurs in each percentile of the distribution is 
maintained even as the distribution shifts around), and (2) a key fact (rising percentile 
trends result in a lengthening of cohort life lines within equivalent segments of the 
distribution, requiring a comparable reduction in rates to achieve the same quantum). 

 
• We need some common framework for understanding tempo effects, if any, as they 

affect fertility, mortality, and other demographic events.  One of the key distinctions is 
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between repeatable and non-repeatable events.  However, in some cases the same 
process can be studied in both ways (e.g., fertility can be modeled using either transition 
or accretion rates), perhaps offering the opportunity to clarify various issues.  A related 
conceptual distinction concerns tempo effects with regard to quantum measures (e.g., the 
TFR), versus the very different case of tempo measures (e.g., life expectancy at birth). 

 
• For various reasons, even our simplest models should be based on historically relevant 

scenarios.3  For example, the fertility model used by Bongaarts and Feeney to derive their 
tempo-adjusted TFR consists of a fertility age distribution that shifts upward or 
downward continuously over time at a constant linear rate (with each percentile of the 
distribution moving in parallel).  They use that model to justify an adjusted fertility 
measure, invoking arguments about what would happen in the presence or absence of the 
assumed delay.  This simple approach was surely useful for developing some initial 
insights about the topic.  However, I believe that we will clarify many issues if we adhere 
to models in which tempo change occurs over a finite interval, which can probably be 
defined in terms of either periods or cohorts for any event, if done properly.4  This 
approach offers two advantages:  (1) it allows us to think more clearly about historical 
episodes of tempo change, and (2) by shrinking the interval toward zero, it may allow us 
to develop a formal definition of localized tempo effects. 

 
• One last observation is that it is important to keep in mind our interpretive goal when 

discussing different approaches to the formalization of tempo effects in the analysis of 
demographic events.  In the case of the TFR, tempo change is relevant when discussing 
this period measure as a representation of female reproductive lives, since tempo effects 
clearly alter the relationship between period and cohort indices of fertility quantum.  On 
the other hand, as mentioned earlier, it is important to avoid possible confusion about 
what a tempo-adjusted fertility measure tells us concerning the implications of current 
fertility levels for population replacement.  In this case, it could be more informative to 
turn the question around and examine the tempo effect on cohorts of (hypothetically) 
maintaining a constant replacement level for period fertility. 

 
Finally, we may wish to observe a sort of demographer’s Hippocratic oath, and thus to be careful 
lest tempo effects be misinterpreted by the various consumers of demographic research.  Of 
course, many issues about the nature of tempo effects in relation to demographic measurement 
remain unresolved within our discipline.  Hopefully this can be accomplished without breeding 
unnecessary confusion in the outside world concerning the meaning of our most basic measures. 
 
 
 
 

                                                 
3 Realistic scenarios are even better, of course, but relevant ones are more practical (and realistic!) from the 
modeler’s perspective. 
4 Perhaps another valid formulation for the mortality model would be to initiate the shift across the age range as a 
function of cohorts (i.e., along diagonals of the Lexis diagram). 
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Figure 1A 
Parallel Shift Model (Fertility) 

 
 

Figure 1B 
Proportional Stretch Model (Fertility) 
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Figure 2A 
Reproductive Age Range:  Parallel Shift and Proportional Stretch Models 

 
Figure 2B 

Total Fertility Rate (TFR):  Parallel Shift and Proportional Stretch Models 
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Figure 3A 
Regime Change Model (Fertility or Mortality) 

 
 
 

Figure 3B 
Percentile Shift Model (Fertility or Mortality) 
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